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Chaotic scattering on a billiard
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We investigate chaotic scattering on an attractive step potential with a quadrupolar deformation. The phase
space features of the bound billiard are studied by using the notion of symmetry lines to find periodic orbits.
We show that the scattering dynamics is intimately linked to structures in the bound Hiltifinite potential
wall) phase space. The existence of preferred scattering directions is shown to be a consequence of large scale
features of the phase space such as the period-two orbits. Self-similarity in the scattering functions is directly
linked to unstable periodic orbits of the bound phase space. The main observations and methodology are
applicable to concave billiards in generg$1063-651X98)02002-9

PACS numbg(s): 05.45+b, 03.65.Nk

[. INTRODUCTION introduce an angle-dependent deformation described by a ra-
dial shape functior;5(8). We are interested iny(6), which
The study of chaos in billiards has a long and productiveforms a closed curve in configuration space. A shape func-
history. Some of the earliest work with billiard systems datedion typically used to describe small nuclear deformations
back to Bunimovich and his proof that the stadium billiard iscan be written
ergodic[1,2]. Also early on Berry showed that various de-
formations of circular billiards exhibited regular, chaotic, or rs(6)=[1+bP,(sin(6))], (1)
mixed behaviof3]. Volumes have been written on various ] )
kinds of closed billiard geometridd—9] as well as billiards WhereP>(x) is the second Legendre polynomial, all lengths
with holes in the wal[10,11 to study scattering problems. &€ scaled by the average nuclear radigsandb is the
However, little work has been done to study attractive potendeformation parameter. This shape function remains reason-
tial scattering with billiard geometries. This particular type @ble for describing nuclei as long #s|<2/7. Beyond this
of scattering finds applications in any physical system that i$he shape becomes “peanutlike,” that is, the boundary be-
well described by a discontinuous interface with a nonsphericomes partly convex. Fdr=0 we have the circulafunde-
cal geometry such as deformed quantum dots, nuclei, fibdPrmed nuclear step potential. We will focus on deforma-
optics, and semiconductor devices. In this paper we discudions around the middle of this rangle=~0.15. This shape
the scattering on a quadrupolar deformation of a circle. wélefines the location of the step so the potential is just a prod-
find that the scattering functions have strongly preferred dilict of the well depth and the step function,
rections that persist for a wide range of deformation. A simi-
lar effect is observed by Mdel and Ston¢12] in light scat- V(r,0)==VoS(=[r—rs(0)]), @
tering in an optical fiber with a quadrupole cross section. W : . . .
show that this behavior is directly linked to the large scaISNhereS(t) 's the unit step function defined by
structure of the phase space, which does not change dramati- 0, t<0
cally as a function of the deformation. The details of the S(t)=
chaotic scattering are related to the presence of unstable or- 1, t>0.
bits near the critical angle for escape. _ . .
We will begin by describing the model system in the Ccm_F|gure 1 shows a plot of the resulting potential for0.15
text of a deformed nucleus and introducing the phase spac@dvo:l'o'_ . ) )
mapping in Sec. II. In Sec. Ill we will examine the bound '€ Hamiltonian in polar coordinates is

()

phase space, in particular, we will use the symmetry lines of ) 5
the map to determine the symmetric periodic orbits. The ex- H= &+ &—S(—[r—r (O)])=e (4)
istence of homoclinic orbits and thus the chaotic nature of 2 92 s '

the bound billiard system is shown. In Sec. IV we apply the

knowledge of the bound phase space dynamics to the studyheree is the scaled energyg=E/V,, andV, is the poten-

of the scattering dynamics using some specific cases to illusial depth. The potential is a constant within the domain de-
trate general relationships. In Sec. V we discuss the implicafined by r (6); if the total energy is negative, the kinetic
tions of the connections described in the paper and the gernergy is also a constant and the total energy can be scaled
erality of the observations. away.

The traditional billiard problem is a bound problem with
negative total energy with no possibility of escape. We gen-
eralize this problem to a scattering situation by sending par-

The model is inspired by the simplest nuclear potentialticles with positive total energy from outside the well. The
shape, that is, a simple step potential in two dimensions. W#ajectories followed by these particles may penetrate the

Il. MODEL SYSTEM
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gent is defined b)fsdfs( 0)/d 6. Other sets of coordinates
that we will use when convenient arg, f) and (6,p), where

s is the arc length measured frof= — 7 andp=cos(y) is

the momentum tangential to the shape at an intersection. The
resulting map in ¢,p) has the form

Ons1=(61,Pn),

Pn+1=9(0n,Pn), 9

which we write in terms of the nonlinear map operatdr,

( 0n+1> ( 6n
=M
Pn+1 Pn
FIG. 1. A plot of the potential energy surface given by EZ). . . )
with b=0.15 andV,=1.0. All lengths and energies are in dimen- 1n€ algorithm for obtaining the map has two steps:

sionless units in this and subsequent figures. (i) Given the slopem(6,,p,), and interceptB(6y,py),

defining the line along which the particle moves after nife

well region, get temporarily trapped, and eventually escapdhtersection with the wall, find the intersection of this line

For this positive total energy case, the total energy cannot b#ith the shape functior,g(6). This providest, , ;.

scaled away. The kinetic energy changes as the particle (i) Transform the momentum vectg( 6, ,p,) after the

crosses the shape boundary; the dynamics at the boundamth intersection into the new coordinate system defined at

will depend on the ratio of the kinetic energy on either sideg, , ;. This providesy, ., and thereforep, ;.

preventing energy scaling. The first step is the nonlinear part of the map. Generally,
We now look briefly at the equations of motion; this is this step involves the solution of

instructive yet not strictly necessary since we will be devel-

. (10

oping a map for the system. In polar coordinates they are rs(0ns1)SIN(0,11)=M(6,,Pn)rs(0+1)COK Oy 1)
i’:pr , (5) +B( anapn)- (11)
Forr¢(6) given by Eq.(1) this is a transcendental equation
o= @, (6)  and so must be solved numerically. The second step involves
r2 a coordinate system rotation and finding the new momentum
direction. The latter depends on whether the patrticle is trans-
. ps mitted or reflected at the wall.
P37 8(r—rs(6)), (@) Consider a trajectory with momentupy before an inter-

section anqS1 after. We decompose these vectors into com-
. drg ponents parallel and perpendicular to the tangent at the inter-
Po="g o(r—rg(0)). (8)  section. From the definition of the potential we see that the
force will always be perpendicular to the shape and pointing
It is clear from the equations of motion that whenr(g)  to the inside. Thus the parallel component of momentum is
#0 the motion is integrable. In the event of an intersectionconserved so that
with the wall,r —r4(6) =0, both the radial and angular mo-
mentum change. Zeroes 6f./76 mark angles for which PoCOS ¥0) = P1COS ¥1), (12)

there is no change in angular momentum. .
g g wherepg andp; are the magnitudes of the momenta and are

Map constant everywhere within a given region and

The dynamics can be rephrased in terms of a mapping. pi=V2{E—V[r—r46)]}.
This follows from the fact that a particle will be deflected
only when it is at the step and undeflected otherwise sinc&quation(12) is precisely Snell's law from geometric optics
the potential is constant. This map will relate the coordinatesvith the refractive indices being, and p; and the angles
in phase space from intersection to intersection with the bilimeasure with respect to the tangent rather than the normal.
liard wall, the trajectory between collisions being straightThe behavior of a trajectory intersecting the shape function is
lines in configuration space. analogous to that of a light ray striking a polished glass

There are many different representations for two-surface. The obvious difference is that light can be both
dimensional maps. We will primarily use a map spaégyj transmittedand reflected from the surface while a classical
whered is the angle at which a trajectory intersects the shapgatrticle is transmittedr reflected. The rule for transmitting a
function. The second coordinatg, is the angle between the particle across the interface is simply that if it can be trans-
forward (counterclockwisgtangent tor¢( ) at the intersec- mitted it will be, otherwise it will be reflected. More pre-
tion and the incoming momentum vector. The forward tan-cisely, if
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|cos yo)|<P1/Po, 13) Iil. BOUND MAP AND PHASE SPACE

The bound and scattering maps share the same phase
space; it follows that the scattering problem is influenced by
the same structures in phase space as that of the bound map.

the particle is transmitted with the anglg given by Eq.
(12). In analogy with total internal reflection in opticy;

= ml2 leads to With this in mind we first study the bound problem.
co =p./pg- 14
e 70)|=P1/Po (14 A. Periodic orbits and symmetry lines
The solutions of Eq(14), denoted byy,, and y,, , are cen- Knowledge of the periodic orbits is key to understanding
tered ony= 7/2. Particles incident within the phase space of the map. Several orbits and their map
~ . coordinates can be guessed quite easily; for instance, the
Yar<¥<Ve (15  period two(P2) orbits, one along the axis and the other
- along they axis. While the existence of others may be obvi-
cross the billiard boundary. ous, their coordinates are not easy to find; like the period

A particle not transmitted across the boundary must stayhree(P3) and four(P4) orbits. There are still others whose
in the region it came from. Since the parallel component ofmere existence may not be as obvious, i.e., those generated
momentum is still conserved, E@12) still holds with ps  via bifurcations of the above mentioned orbits.
=Py, yielding An elegant construct for finding periodic orbits in “re-
versible” maps involves the use symmetry line$13-14.
COSyo=COS ;. (16)  These follow from the fundamental symmetries of the prob-
lem, in our case time reversal invariance and geometrical
This gmbodies the law for specular reflection, which i_n OUrsymmetries ofr(6). This leads to three distinct symmetry
coordinate system must be taken to pg=—yo, that iS, _ gperations for our map: momentum reversa}), reflection

reflection by the same angle with respect to the tangent. Thighoyt thex axis (R,), and reflection about thg axis R,)-
is the only possibility for the bound problem, namely,  They are defined by

<0.
Applying these rules to scattering billiards leads to the 0 0
following results. A particle incident from the outside Rp o\ =p/ (19

(asymptotic regiopwill always be transmitted to the inside
(interaction region On the outside we have,= \2E while o\ [—o
on the insidep;=+2E+2 so Rx< ):< ) (20

P1/po= 1+ 1/E>1>|cos y,|VE>O. 17

0 sgn @)m— 0
On the other hand, for a particle incident from the inside Ry p| p ’ (D)
p1/po=VE/(E+1)=|coq y,)|<1VE>0. (18  with
So the particle may be transmitt@ftos(yy)|<vE/(E+1)] sgr( 6)= 1, 6=0
or reflected[|cos(y)|>VE/(E+1)]. Equation(18) shows gno)= -1, 6<0.
that there is always a critical angle for reflection no matter
how energetic the particle is. The operator®,, ,R, ,R, are clearly their own inverses. Each

From the scattering perspective we are only interested ialso inverts the map,
trajectories that will intersect the shape function. These in- .
teresting scattering initial conditions will be in one-to-one M™*=TMT, (22)
correspondence to points in the bound map. However, when
a scattering trajectory is exiting the interaction region theVhereT represents any one of the three operatgsR,, or
map point will have a negativg value between 0 ane 7. y: _ ) )
The y value is always positive for the bound map and the All reversible area preserving maps can_be factored into a
scattering map until escape. We transform the exit domaiRroduct of twoorientation reversing involutionsr symme-
into the region between thg, lines (see Fig. 8by using the Y Operatorg13],
positive y of the bound particle with the same incident angle.
The entire domain of the scattering map therefore becomes
the Same as that of the bound map; this is crucial in underwe are interested in the three factorizations of the map given
standing the connection between these two maps. The d%-y
main for both maps is € y< 7 and— w<#<. The phase
space of the scatt_ering map is partitiqned intp the asymptotic M=1,1,={MT}T. (24)
region betweeny, and y_, and the interaction or bound
region, which makes up the rest of the phase space. Thus tigy
first and last bounce of scattering trajectory are always in the
rangey, < y<ve - lo=T, (25

M=1,l,. (23
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TABLE I. The symmetry lined’; andI'; and their branches for T
the symmetrieR, , Ry, andR, . The second subscript refers to the
different solutions or branches of E®8).
Symmetry line Equation Domain 4
I'5o 6(p)=0 vp
F)((),l o(p)= Vp
Yo 0(p)=—ml2 Vp Y w2
Iy, 0(p)= /2 Vp
rH p(#)=0 Vo
< mrd
I'io o(6)= rL(6)sin(6)+r{6)cos@) 6=0 -
Vri(6)+r%(6)
Il ” rL(6)sin(6)+r{6)cose) 6<0 o
p(6) =~ , ] ! !
, \re(6) +r%(6) - —m2 0 /2 7
o 0(6)= r<(8)cos@)—ry6)sin(6) 0s|0\<z
JFZ(6)+1%(0) 2 _ )
F{yl B ri(6)cos@®)—r{6)sin(9) Z<|0|< FIG. 2. Both branches Qf the.ten gymmetry lines frbgto FQ
p(0)=— o) T %0 2 ™ for b=0.15. All angles are in radians in this and subsequent figures
P rs(6)+1r°(0) unless otherwise noted.
p — —
Pni{éIMM¢=¢}, (30)
[{=MT. (26)

that is, then period points are invariant undarapplications
%f the map. This set includes orbits whose periods are divi-
sors ofn as well. The important result from the symmetry

|n:Mn|0' n:O,l, e (27) Iine theory[15,13| iS

The above operators represent the first two in an infinit
hierarchy of symmetries defined by

WhereM'“. repr.esgn'ts? composfuons oM. _ I'yNTWCProm- (31)

To utilize this infinite hierarchy of symmetries we need to
determine the invariant sets @ymmetry linesassociated
with each of the involutiond,,. The symmetry lines are the
solutions of

Using this method the search for symmetric periodic orbits
reduces to finding the intersections between different sym-
metry lines.
Ty{&l.é=¢}, (28 Figure 2 shows the symmetry lines frdi§ to I'g for the
deformation,b=0.15. Each of these lines has two branches;
where {=(6,p) is a point in the map. The symmetry lines the two vertical lines a=0 andg= = areI'§ ;andI'} , and
satisfy the following recursion relatigri4] the two branches 0 and 1 &% to I' start at (O7) and
M =T 29) (77,77), rgspectively. Periodic orbits can be obtained from'the
n— = 2mtn- intersections of these symmetry lines. As an example Fig. 3

Letting n=0 will generate all of theevensymmetry lines: ~ Shows the intersectiofgNI'y (we drop thex superscript
label from here on

M™o=T"51. The periodic orbitd?3 andP9 are located at the intersec-
_ _ . tions of these two lines. The orbits are labeled by their wind-
Letting n=1 will generate all of theodd symmetry lines: ing numbers, which is determined by counting the number of

times, k, the symmetry lines have “wrapped around” the

cylinder defined byd beginning with the smallest. We will

We will call the linesI'y andT"; the fundamental symmetry come back to the fact that the orbits Iabgele(_j 6/9 and 3/9

lines of the map. The ?undamlental symmetry lines for eachconS|st of three intersections each. The winding number of
Lo . . . the orbits obtained fronh',, ;N T, ; is formally given by

of the possible involution pairs can be calculated analytically ] ’

and are presented in Table I.

MM =T oms 1.

Note that there are two branches for each of the spatial 2[km— k| -
symmetry lines while there is only one branch for g Im—n| J
symmetry line and no solution fd*} . The immediate result =N 2k~ k| +1 (32
m n

of the nonexistent'} is that there are no odd symmetry lines
for momentum reversal. It follows that there are no momen-
tum reversal symmetric odd period orbits.

A periodic orbit is defined by with k,=0, ...,|m|-1, k,=0, ...,|n|—1,

, 1#F ],

[m=nl|
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FIG. 3. The symmetry lined'g,, I'5,, I'go, and 'y, for b
=0.15. The orbits found along=0 are labeled by their winding

numbers.

whereky, (k) is the number of times thE,; (I'y;) sym-
metry line has wrapped around the cylinder. As shown i
Fig. 3 thel'ggNI'gp andI'g NI, gives us all of theP9
orbits that have a vertex &t=0 and reflection symmetry
about thex axis. All of the P9 orbits labeled in Fig. 3 are
shown in Fig. 4. Thd’g ;N I'ggandl’y ;N T'g; give all of the
P9 orbits that have a vertex &t 7 and reflection symmetry

about thex axis.

B. Bifurcations

FIG. 5. A blowup ofI'gNT'y around the “6/9” intersections
showing deformation parameters from before the bifurcation to af-
ter the bifurcation. The values of the deformatidnsare quoted in
the text.d has units of 10* rad.

iodic orbits are created, destroyed, or collide. The symmetry

lines can be used to obtain bifurcation information. In Fig. 4
there are three orbits labeled with winding number @&#8d
three with 3/9). The local twisting of thEq symmetry line
indicates that a bifurcation of some kind has occurred at
some smalleb value. In Fig. 4 the sequence of orbits on the
right shows the three orbits resulting from this twist of the
symmetry line. The ordering is as shown: the 2/3 orbit is
between the twoP9 orbits labeled 6/9 and 6/9-. It is

Bifurcation diagrams summarize the behavior of dynami-instructive to examine this segment of the symmetry lines as
cal systems as parameters are varied; they describe how pgfunction ofb to gain a better understanding of the nature of

1/9 (B/9) orbit

3/9— {5/9+) orbit

2/9 {7,/9) orbit

1/3 (2/3) orbit

479 (5/9) orbit

3/9+ (6/9-) orbit

FIG. 4. TheP9 orbits resulting from Fig. 3.

this bifurcation.

Figure 5 shows a blow up series of thg NIy, for
different values ob ranging from before to after the bifur-
cation. This series reveals that before the bifurcation there is
only the 2/3 orbit (e.g., b;=0.12175). At b=b,
=0.121 787 there is a saddle center bifurcation that creates
stable (6/9-) and unstable (6/9) P9 orbits. After this bi-
furcation the twoP9'’s are next to each other and tR& is
below them(e.g.,b;=0.1218) until the unstablB9 collides
with the P3 orbit atb=b,=0.12187 and they pass through
each other, resulting in the situation pictured in Fig. 4. Figure
6 shows the phase space around one ofRBeixed points
(a) after the tangent bifurcation but before the collisidn (
=b3) and (b) after the collision b=bs=0.12195). This
type of bifurcation is referred to by MacKdy3,17 as an
“m bifurcation” and is a generic bifurcation of area preserv-
ing maps. The bifurcation diagram for this bifurcation is
shown in Fig. 7. The original orbit is labeled by its winding
number, 6/9. TwoP9 orbits are created in a saddle center
and the unstable one passes through the original period 6/9
orbit. The two steps to this bifurcation are the saddle center
creation of two orbits followed by the collision of one of
these with the generating orbit. These two steps occur at
different values ofp=cos(y); in general, they may occur at
the same value gb, Ap=0. All of the generic bifurcations
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2.250 ; (a) (0,7/2) (7, 7/2); the two periodic points are surrounded by

large regions filled with KAM tori. Figure 8 shows the KAM

regions associated with the stalfi2 orbit along with several

2.243F

sz- g ] other stable periodic orbits and two chaotic trajectories. Also
seen in this Fig. 8 are the stab®4 orbits with winding
22351 1 number 1/4 and 3/4. Their tori are surrounded by f&&
2930 , orbits created during anr bifurcation” of the P4 orbits. In
02 °é° 02 configuration space the stabl4 is diamond shaped with

2.250

vertices atd=0, = 7/2, and .
The unstable counterparts of tf2 andP4 orbits men-
tioned above are equally important. The unstaB orbit
lies along they axis and has the map coordinatesZ,7/2),
(—m/2,712). The unstablé>4 orbits trace out a rectangle in
configuration space, with the long sides parallel toythais.
The 1/4 orbit follows this path in a counterclockwise direc-
tion while the 3/4 orbit follows the same path in a clockwise
direction. Unstable orbits are characterized by their stable
FIG. 6. Phase space near one of #@ fixed points(a) for b and unstable manifolds. Figure 9 shows approximations to
=0.1218 andb) b=0.12195. the stable manifolds of the unstat#@ orbit and theP4 orbit
with winding number 3/4. A manifold is an invariant set
of area preserving maps are discussed in several referencéddder the mappingor inverse mapping in other words, a
[13,18-20,1T. point on a manifold maps to a point on a manifold. Iterating
a suitable subset of points belonging to the manifold will
C. The P2 and P4 orbits generate an _approximation to the Wh_ole manifold. The_ sim-
plest (approximatg subset of the manifold can be obtained
The current investigation is primarily focused on a billiard by linearizing the map around a periodic point. The linear-
with a deformation ob=0.15. Atb=0 the billiard is circu- ized map provides the “Stabi”ty matriX,” WhiCh, for Simp'e
lar and the phase space consists of periodic orbits with ratioc|psed billiards, has a general analytical solution given by
nal winding numbergresonant tojiand quasiperiodic orbits - Berry[3]. The stability matrix can be diagonalized to find the
with irrational Wlndlng numbe‘irrational torD. As theb is stable (negative eigenvame’s eigenve@toand unstable
increased from zero the resonant tori are all destroyed, |ea\(positive eigenvalue’s eigenvecidtirections at the periodic
ing isolated periodic orbits. On the other hand, many of theysints. To generate the stable manifolds shown in Fig. 9 we
irrational tori persist forb>0. These irrational tori stretch pegin with a large (19 set of initial conditions from a small
across the phase space, creating natural momentum boungsgment (108) of a line lying along the stable direction and
aries. Atb=0.15 nearly all of the original irrational tori have centered on a periodic point. These initial conditions are then
been broken, leaving nothing but isolated islands and chaotigerated under the inverse mald, L, for about 30 iterates.
orbits. So, in principle there is no dynamical partitioning of geyond ~ 30 iterations small deviations of the initial set of
the phase space into different momentum regions as is theints from the actual manifold start to become large, pro-
case with smaller deformations. Thus the phase space is Yucing large deviations from the actual manifold.
pected to be quite complicated. Yet, in spite of this complex- The P2 andP4 orbits’ manifolds and KAM regions oc-
ity the Iovy perio.d orbits play a key role in the dynamics. cupy a large portion of the map and so are important in
Of particular importance are tte2 andP4 orbits. There  nderstanding the dynamics. However, there are an infinite
are two P2 orbits, one stable and the other unstable. Theyymber of other periodic orbits that play a role in the dynam-
stable orbit lies along the axis and has the map coordinates jcs. The ones that are particularly important for the analysis
in the next section are periodic orbits whose stable islands
have bifurcated away, leaving nothing but unstable periodic
points and their manifolds. A particular set of such orbits that
P9+ we will examine more closely are those with winding num-
bers between 1/2 and 3/4. The manifolds of these orbits are
sandwiched between and intimately intertwined with B2
andP4 manifolds of Fig. 9. In the next section we will relate
the gross scattering properties to tA2 orbits and the finer
scale structure of the scattering to the low period unstable
orbits near the asymptotic region of the scattering phase
space.

IV. SCATTERING

deformation (b) . . . ) .
A scatterlng experlment consists of Iaunchlng posmve en-

FIG. 7. The bifurcation diagram for therti bifurcation” asso-  ergy particles from an asymptotic region towards an interac-
ciated with the 2/3 orbit. tion region and observing their “states” upon leaving the
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0 | | |
—11/2 0 /2 m

FIG. 9. The stable manifolds of the 1/2 orbit and the 3/4 orbit
along with they,, lines for E=0.2856. Also shown is the set of
initial conditions, I, corresponding to/,=0, p,,=0, and p,,=
+\2E.

FIG. 8. The map featuring some of the remaining KAM regions
around the stabl®®2, P4, andP6 orbits as well as some higher system. For our analysis we launch particles from a line at
period orbits. Also shown are twB6 island chains around tHe2  fixed X, outside the well and parallel to theaxis with fixed
and two chaotic trajectories. The inset is to help the reader identifyfnomentum components,,= J2E, and Pyo=0. The impact
the periodic orbits. parameter is/,. We will record the scattering function®

and n as functions ofy,. The angle® is measured with
interaction region. For the billiard problem the asymptoticrespect to thet x axis. Figure 10 shows a series of enlarge-
region is the area outside the billiard and the interaction rements of the scattering functio®(y,) for b=0.15. The
gion is the area inside and including the billiard boundary.
The “state” observed on leaving the interaction is often the

0

—Tm/2 /2

escape angleb, that a trajectory makes to an arbitrary fixed
axis. Another interesting quantity to observe is the “delay

time,” which is defined as the amount of time a particle .

remains in the interaction region.

In terms of the bound billiard map the asymptotic region
is defined by the area between the critical angies, The
interaction region is the area aboyg. and belowy,, . Fig-

2+

ot

ures 8 and 9 each show the bound phase space with th _,
1.10

critical angle linesy,, separating the asymptotic from the
interaction region. A scattering trajectory will have exactly
two map points in the asymptotic regidbetweeny,); one
corresponding to its entry into the billiard and the other cor-
responding to its exit. In general a scattering trajectory may
also have an arbitrary number of points in the interaction

region of the map corresponding to being trapped in the po-¢

tential region. The number of map points,that a trajectory
has in the interaction region corresponds to the number ol
times it hits the billiard wall without escapiripouncey this

is effectively equivalent to the delay time. Thus the scatter-

ing map looks just like the bound map with horizontal lines 3%&s 7335

corresponding to the critical angles dividing the phase spact
into asymptotic and interaction regions.
In scattering problems one typically defines an impact pa-

2}

4

2b

oF

FIG. 10. A series of enlargements of escape angle vs impact

i
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rameter that is a simple function of initial conditions. For parameter foE=0.2856 andb=0.15. The large hash marks on the
two-dimensional nonintegrable dynamical systems a genergl, axis indicate the region enlarged in the next level. The trajecto-
analysis requires that the space of impact parameters also hes are all launched from the left of the potential region with

two dimensional. However, as we will demonstrate below, a=0 andp,=\2E. The deformation here is=0.15 and the energy
well chosen one-dimensional impact parameter is sufficienis E=0.2856. The escape angle is the angle of the momentum vec-
to characterize the chaotic nature of our billiard scatteringor measured from the-x axis.
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The origin of this fractal set lies in the stable manifolds of
the homoclinic orbits of the system. The manifolds them-
selves are of measure zero in phase space so that a typical
initial condition will not fall exactly on a manifold. How-
ever, initial conditions that find themselves near one of these
manifolds will tend to move toward the periodic orbit before
moving away. If the periodic orbit is entirely in the interac-
tion region then the particle may be trapped for an arbitrarily
long time as it approaches the periodic orbit. For chaotic
scattering to occur these manifolds must reach into the
asymptotic region where the initial conditions live. For bil-

o H e 1 liard systems the asymptotic region is defined by the critical
2t . angles for escape. Thus there can be chaotic scattering only
d | ] if the stable manifolds of periodic orbits that live in the in-
of 31 YRR, ——d teraction region cross the critical angle.

1000

500

_al ] A. P2 and P4 manifolds

4' W FIRRERT Figure 9 shows an approximation to the stable manifolds

RLEEERE L T I S T — T of the P2 orbit and one of theP4 orbits along with the

Vo critical angle lines defining the asymptotic region. We also

show the line of initial conditionsl, that produced the re-

FIG. 11. Top: the number of bounces, before escaping vs the sults in Figs. 10 and 11. ThE4 manifold lays on theP2

impact parametery,. Bottom: the escape angfe as a function of manifold and mixes with it at their “interface.” In between

impact parameter. the P4 and P2 manifolds there are an infinite number of
. i ) other unstable periodic orbits whose stable counterpart peri-
level-0 plot excludes the relatively uninteresting range ofygic orbits have bifurcated at smaller deformations and
impact parameters Qy,<1.1 where trajectories bounce \yhose stable manifolds are intimately intertwined with the
only one, two, or three times before escaping. Note that ifby anqp4 manifolds. As we will see below, these orbits are

the range of impact parameters shown all trajectories bounc@snansiple for the structure of the scattering functions, in
four or more times before escaping. There are several intefs, icyar, the scaling and relative sizes of smooth regions
esting features of these plots. First, there are clearly regions.en, in the scattering functions.

where the scattering is regular, i.e., piecewise continuous

separated by “unresolved” regions. Second, the “odd” en-manifolds of periodic orbits living in the asymptotic region

largements(e.g., levels 1 and)3are mirror images of the iy have very short scattering times. For example, the un-
“even” enlargements. Third, the scattering is predominatelygiapiep 2 orbit is such an orbit. Its stable manifold dominates
in the forward and backward directions while other anglespe asymptotic region so that most initial conditions will find

are clearly excluded, indicating preferred scattering direCyhemgelves close to it; the resulting trajectories will bounce
tions. Fourth, the figures show a striking self-similarity thatomy a few times, if they bounce at all, before escaping.
persists on all scales attainable with double-precision ﬂoaﬂn%cattering trajectories that are initialized near the stable

point arithmetic. We will address each of these points in turiy, o ifolds of periodic orbits that live in the interaction region
and then ask whether such features persist when we allow gflj exnipit long scattering times. The4 orbit is an example

possible scattering initial conditions. , _ of this type; its stable manifold reaches the asymptotic region
The behavior of the scattering function of Fig. 10 is the, .o scattering trajectories may come close 1o it.
hallmark of a chaotic scattering syst¢@1—24. The smooth

regions are sets of initial conditions that bounce the same
number of times before exiting. They are separated by re-
gions where the escape angle appears unresolved or “cha- The presence of the large KAM zones around the stable
otic” as a function of impact parameter. As Fig. 10 showsP2 orbit restricts the manifoldéand therefore, the chaotic
this behavior persists to higher magnification of an unretrajectorie to the two “neck” regions around= = /2. It
solved region so that at any magnification there are always ultimately a result of the existence of larB@ KAM zones
chaotic regions in the escape angle function. Figure 11n the phase space that restricts particles to exit in either one
shows(top) the number of bounces, before escaping ver- of these neck regions. The extent of th2 manifolds limits

sus the impact parameter aflzbttorm) the escape angle ver- the momentum range of the escaping particles. Thuthe
sus impact parametdthis is Fig. 10, level D This shows orbits are the source of the bidirectional nature of the scat-
that the chaotic regions are related to trajectories that boundering functions. In this section we present a way to get a
a large number of times before escaping. The more bouncesore quantitative measure of the degree of directionality
a particle undergoes the more sensitive the outgoing angle fsund in the escape angle function.

to small displacements in the impact parameter. The singu- The preferred directions apparent in Fig. 10 are indepen-
larities in the functiom(y,) form an uncountable infinity of dent of the particular choice of scattering initial conditions.
points; the impact parameters that lead to infimitéorm a  That is, the same preferred directions and range of escape
fractal set. angles result from nearly any line of initial conditions that

' Scattering trajectories that are initialized near the stable

B. Preferred scattering directions
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FIG. 12. The critical angle lines and their images under one
iteration of the map fob=0.15 andE=0.2856. The shaded regions
represent areas through which particles that have bounced at least
once will exit.

we choose. To show this consider a set of initial conditions

consisting of the two linesy, and y,, under one forward FIG. 13. The escape angle ranges obtained from the shaded
iteration of the map. Iterating the boundary between theaobes of Fig. 12 overlaid on the billiard shape for initial conditions
asymptotic and interaction regions in this way we obtain arabovey, .

image of the boundary one bounce later. Since the mapping

is orientation preserving the phase space abpyenaps to  gion. We consider finitial conditions in the rectangle
the phase space aboy,, and belowy, maps to below given by —7<#<w and 7/2<y<y4=2.061 596(corre-
My, . Figure 12 clearly shows there are well-defined areasponding toE=0.2859 keeping track of the number of
of the asymptotic region into which trapped particles mustbounces before exiting. Figure 14 shows a histogram of the
go. The allowed regions of escape for particles that hav@umber of trajectoriesN, binned according tda) escape
bounced at least once are defined by the four shaded lobes éimgle® and (b) the 6 value at escapé. This figure shows
Fig. 12. It also shows that at this energii€0.2856) and trajectories that have bounced four or more tirfteere are
deformation p=0.15) particles that are trapped in the upperno three or five bounce trajectorjesdere we see that the
phase spacéclockwise rotating orbitswill never reach the range of escape anglal is precisely what is observed in
lower phase spac@ounterclockwise rotating orbijts Fig. 10. Had we included “fly-by,” one bounce, and two
The areas defined by the shaded lobes of Fig. 12 are easibpunce trajectories in the histogram the directionality would
converted into escape angle ranges. The plot shown in Figtill be apparent. However, the range of escape angles would
13 shows these escape angle ranges overlaid on the billiatse wider. If we continue the process of excluding the fewest
shape for initial conditions abovg,, , that is, clockwise ro- bounces further we will find the distribution and range re-
tating orbits. We find that the escape angle must fall withinmains essentially unchanged. This rapid convergence with
the two limits given by the number of bounces implies that it takes about four

—1.0709<®<<0.9355,
—4.2125 $ < —2.0609. (33

These limits apply to all initial conditions starting anywhere
in the upper interaction region. The range of escape angles
observed in Fig. 10 certainly falls within these bounds. Later ]
we will address the fact that the escape angle ranges ob-
served in Fig. 10 are much smaller than the ones given in Eq.
(33). Thus, we have an upper bound on the range of escape — '_'2 E— {'3 I E—]
angles for any set of initial conditions in the upper interac-
tion region. The ranges can be reflected abbatO to ob-
tain the range for initial conditions in the lower interaction  FiG. 14. The number of trajectori@s binned by (a) escape
region. angle® and (b) exit angle® including all trajectories with more
We can verify the existence of the preferred directions ashan three bounces. The data are from? fitial conditions
well as add distribution information by launching a large setlaunched between 7< < 7 and 7/2< y<2.061596 correspond-
of initial conditions evenly distributed in the asymptotic re- ing to E=0.2856 and a deformation parameterbef0.15.
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FIG. 15. The critical angle lines and their images under one T
iteration of theinverse map for b=0.15 andE=0.2856. The
shaded regions represent areas that lead to trajectories that boun | S Tiowr i R
at least once. Yo (yo—1.124501)x10°

bounces for a chaotic scattering trajectory to “forget” where ~ FIG. 16. Number of bounces before escaping as a function of
it came from. This is so since the distribution of outcomes ofMPact parametey,. This series covers the same impact parameter
all possible initial conditions is well reproduced by a small "69ions as Fig. 10. The axis is offset by seven and truncated to a
sample of initial conditions. Of course the small sample of"2"9¢ ofAn=20 at each enlargement to illuminate the role of the
initial conditions cannot be completely arbitrary; it must paSSP|7 orbit and enhance the self-similarity between enlargement lev-
through a “relevant” region of phase space. What preciselye S
constitutes the relevant region is the subject of the next parasose to the asymptotic boundary and, since the trajectory
graph. can bounce at all seven vertices, all of its periodic points lie
in the interaction region. This is verified in Fig. 19, which
C. Chaotic region shows an approximation to the 5/7 manifold, the circles rep-

. . ) resent the periodic points of the orbit.
We can invert the question answered by Fig. 12 and ask: e p7 orhit is also responsible for the length scaling

“What part of the asymptotic region leads to trajectories tha%)etween levels in Fig. 16 by way of its stable manifold. In
bounce at least once?” To answer this we take the critical

angle lines and iterate them once with the inverse map to ge level © (n=6}
Fig. 15. Trajectories beginning in the shaded lobes will enter 2 ' ' '
the interaction region for at least one bounce. Consider this
picture overlaid on Fig. 9. A large portion the shaded region
of Fig. 15 is occupied by the stable manifold of #h2 orbit.
This portion of the shaded regions will lead to nearly all of
the one and two bounce orbits. The manifolds that lie be-
tween theP2 and P4 are responsible for the longer orbits.
Most important are unstable periodic orbits whose periodic
points lie entirely in the interaction region but whose mani- =z
folds reach into the asymptotic region. These are responsibli
for the structure of the scattering functions.

To illuminate this connection we look at the escape time -
functions associated with the series of enlargements of Fig
10. These are shown in Fig. 16. We choose to enlarge the 4
chaotic regions between the two largest smooth regions iny
side a chaotic band; thus we are looking at the largest scali o
feature of the scattering functions. Clearly one level can be
scaled into another. We have already identifiedrtlseale by —f
offsetting each enlargement by seven. In Fig. 17 we have

level 1 (n=13)

1k
y
5] 8

—1}F

plotted the trajectories associated with the impact paramete -2L...... .y : ] 2l : ]

at the center of the largest smooth regions in each level, i.e. x x

n=6 of level 0 in Fig. 16. We see that these trajectories all

start near the 5/7 orbitshown in Fig. 18 and follow it FIG. 17. The shortest orbits in each of the levels of Fig. 16. The

around one more time for each enlargement. This impliegrajectories are chosen from the center of the largest smooth regions
that the period seven orbit should have a periodic point veryn each level.
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FIG. 20. A plot of InAy,) vs n with the Ay,'s are the lengths

FIG. 18. The 5/7 orbit that is approached by the orbits in Fig.of the longest region in each of the levels of Fig. 16. Also shown is
17. a linear fit to this data giving a slope af=—0.4867.

ing should decrease exponentially as the periodic point is
approached.
Figure 21 also provides an explanation for the reflection

Fig. 20 we plot the natural log of the length of the longest
regions in each plot, I&y,), versus the number of bounces
to escapen. The points are well fit by a straight line with a symmetry between the adjacent levels of Fig. 16. For in-
slope ofm=—0.4867. Since the set of initial conditions is stance, to scale level 1 into level 2 we must reverse the
transverse to the 5/7 manifold the scaling relationship in the)iantation of the impact parameter as well as scale the
scattering functions is a direct measure of the scaling of disiangths. This orientation reversing arises from the fact that
tances between “fingers” of the 5/7 manifold. This suggeststhe initial conditions for adjacent levels fall on alternating
that the scale factor found above may be related to thgjdes of the stable manifold. We see that the line of initial
Lyapunov exponent of the 5/7 orbit. The Lyapunov exponentonditions associated with each level alternates from one
is found to bex~0.42. The details of this relationship will sjde of the manifold to the other. In terms of the manifold
be investiggted elsewhere. Figure 21 shows a sketch of thgketched in Fig. 21 mapping the finger labeled “0” into the
stable manifoldWs, periodic point marked®, the line of  finger labeled “1” requires reflecting about their common
initial conditionsl, and theyy, line. Note that we have rep- point and rescaling. We must also reflect about the line of
resented the spacing between intersections ahd W5 as  initial conditions and scale, however, this transformation
approximately constant when, as we have just seen, the spac-
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FIG. 21. A sketch of the stable manifold near a periodic point in
the interaction regior(above y.,). The line labeled represents
FIG. 19. An approximation to the 5/7 manifold. The periodic initial conditions. The numbers correspond to the level of enlarge-
points are indicated by the black dots. ment of scattering functions.
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TABLE II. The lowest period orbits up t&®19 with winding  location of the cutoff winding numbseindicated by the ver-
numbers between 2/3 and 3/4. The bottom row of numbers ordergcal bar in Table I) for a fixed deformation is a function of
them from lowest to highest period. TR is effectively a bound- — energy. We see that as the energy is increased, orbits are
ary orbit and is labeled by, indicating it as the source of the finest removed from the sequence and the scaling properties of the
scale structure. scattering function change.

2 i S A 12 s 13 8 i 14 3

3 16 13 10 17 7 8 11 15 19 a
1 1 1 1 1 T 1 1 1 V. CONCLUSIONS
4 2 6 1 7 3 5 8

We have studied chaotic scattering on a quadrupole de-
formed billiard. The results obtained have general applicabil-
ity despite our use of a specific billiard geometry. We
cannot affect the one-dimensional scattering functions. showed the existence of preferred chaotic scattering direc-

Now that we understand the mechanism that produces thions. We have explained the origin and organization of the
largest scale features of the scattering functions, below weelf-similar structure of the scattering functions in terms of
examine the next largest features. To this end we looked at@nstable periodic orbits of the bound billiard system. Peri-
set of pictures similar to those of Fig. 16 where the enlargeodic orbits of the bound system were found using symmetry
ments are taken from the leftmost chaotic region in the levejine theory and the stable manifolds of some of the unstable
0 plot (1.116sy,=1.118). This series of enlargements 100Kks grpits were calculated.
identical to Fig. 16, except for the range of impact param- \e have shown that the existence of preferred scattering
eters involved. Here, however, we find that the largesgirections is independent of the choice of initial conditions.
smooth regions in each level are 10 bounces apart. The orbithis is true provided the chosen set of initial conditions in-
responsible for the scaling in this series is the 7/10 orbit. Theersect the stable manifolds of periodic orbits in the interac-
length scales by 0.45 between levels while the Lyapunoyion region. The escaping trajectories are restricted to leaving
exponent of the 7/10 orbit is~0.400. The same reasoning the billiard domain in the regions of sharpest curvature. This
that we used for the 5/7 orbit applies here; the characteristicYocalization” of the chaotic scattering trajectories results
of the unstable 7/10 manifold are responsible for the selffrom the existence and persistence of laREEKAM regions
similar nature of these structures. in the bound phase space. This forces trajectories to be fun-

The process of identifying prominent smooth regions ancheled into the two regions between the tori, which corre-
their adjacent chaotic regions with certain periodic orbits carspond to the large curvature regions of the billiard. The tra-
be continued. The next orbit found in this way is the 8/11.jectories are also localized in escape angle. This is a
The pattern that emerges from this process is that the largesbnsequence of the degree of stretching of the phase space
features are controlled by the lowest period orbits left in theenforced by the®2 manifolds. Increasing the deformations
interaction region. For the range of energies for which theyill increase the stretching of the phase space, making the
3/4 orbit is still in the interaction region this orbit behaves allowed escape angle range largfar a fixed energy The
approximately like a boundary orbit; the very finest featuresonly requirement for thé@2 orbits to play such a central role
(longest escape time trajectoriesf the scattering function s that the billiard wall be concave everywhere. The details
show orbits converging to the 3/4 orbit. This is only approxi- of the functional form of the shape are not important as long
mately true since there are higher winding number orbitsas integrable billiard geometrigsircle, ellipse are avoided.
whose manifolds find their way past the 3/4 and reach the The nearly perfect self-similar structure of the scattering
asymptotic region. The property of tii®4 orbit that distin-  functions is a result of the fractal structure of the stable
guishes it as a boundary orbit is the fact that the stélsle manifolds of periodic orbits in the interaction region. Each
orbit has not yet been destroyed by bifurcations while all ofsuch orbit contributes to the structure and scaling of the scat-
the other orbits between ti®2 andP4 are unstable. ThB4  tering functions. The most influential orbits, in the sense that
KAM tori that remain force the flux of trajectories into chan- they are associated with the scaling of the chaotic regions
nels containing the unstable orbits that slow the momenturgeparated by the largest smooth regions, are the lowest pe-
diffusion of the trajectory. riod orbits that are still in the interaction region at the chosen

Using the approximation that the 3/4 orbit presents ascattering energy. Since the interaction region is defined by
phase space boundary we can develop an algorithm to préle particle energy, changing the energy will change the scat-
dict the sequence of orbits responsible for the successivelering functions. However, for small changes in energy for
smaller features of the scattering function. Consider all periwhich the lower period orbits remain in the interaction re-
odic orbits whose winding numbers are between the 3/4 orbigion the large scale structure should remain roughly un-
and the next lower period orbit that falls in the asymptoticchanged. Only when the lowest period orbits fall in the
region, in the current example this is the 2/3 orbit. The orbitsasymptotic region will there be a major structural change in
are ordered from the lowest winding number to the highesthe scattering functions.
up to some desired periodicity. If an orbit has a periodic We presented a general algorithm for relating the periodic
point in the asymptotic region, then all orbits of lower wind- orbits to the self-similarity of scattering functions. There are,
ing number are also in the asymptotic region and are exhowever, several caveats that apply to this simplistic picture.
cluded. The remaining orbits are then ordered from the lowFirst, we have assumed that the Birkoff orbits, those that
est period (largest structurgs to the highest (smaller arose from the undeformed circular billiard, are the only con-
structurey, excluding the boundary orbit 3/4. The sequencetributors to the structure of the scattering functions. This
for E=0.2856 is shown in Table Il for orbits up ®19. The view omits effects due to other orbits such as bifurcations of
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the Birkoff orbits. For the large scale structure that we haveby billiards are mesoscopic systems lying on the border be-
examined the omission seems justified but we expect that thgveen the quantum and classical worlds.

existence of these orbits should have some noticeable effedhere are other interesting situations that we have left unad-
on smaller scales. The other caveat concerns our ability tgressed. If the particle energy is lowered significantly the

sort out the relative sizes of smooth and chaotic regions¢orresponding asymptotic region shrinks and eventually the
Beyond the three regions that we have examined and attrigiPper(lower) lobes of Fig. 12 will overlap the loweuppe)

uted to the lowest three periodic orbits it is difficult to deter- interaction region. This should represent a significant change

mine where to look next. Nevertheless, the algorithm stjllin the scattering dynamics in the sense that some trajectories

sheds some light on the origins of the structure of the sca€ScaPing the uppeilowen interaction region will be rein-

tering functions. With these considerations in mind the aIgoJeCte.d into the Iowe(uppeb. 'I_'he effect Will be to_increa_se_
rithm will also be applicable to higher-energy scatteringthe lifetime 'of'some trajectories Wlthout.mtrqducmg.an mfl-
where theP4 orbit is in the asymptotic region. The 3/4 orbit nitely self-similar structure since they will still be primarily
then becomes the lower boundary in the same sense that tR&3" the. P2 .manlfold anq therefore attractgd to .the
1/2 orbit is a lower boundary in specific example discussed‘f"sympto.t'(.: region. To put this gnother way, the signal W'”. be
The upper boundary will be the next higher period orbit with & lot noisier. However, the directionality of the scattering

KAM tori remaining. For the deformation used throughout W?” b? just_as pronounced since the KAM islands of fhg
this paper b=0.15) that orbit is the 5/6 will still be in effect and the escape angle will necessarily be

close tor/2.

inally, changing the deformation parameter, particularly
making it smaller, will substantially change the bound phase
| Space and therefore the scattering. If there are irrational tori

are generally applicable. From these symmetry lines and threemat\|n|n%_1:[fhey W'"f 'tmposte ljatu[ﬁi_bmrj]nd?(;les to tTIe mo-
application of the map the infinite hierarchy of symmetry mentum difiusion of trajectories. 1his should genérally pro-
lines can, in principle, be found. The intersections of theséjuce a simplification in the self-similar patterns of the scat-

lines provide the location in phase space of the periodi&e”ng futr;\ctlpnsbsmced thre].reh m” be antat.bsolut.e vx_nndmg
points of all the symmetric periodic orbits. The symmetrynum er barrier beyond which the asymplotic region 1S nac-

line methodology is extremely powerful and can be auto-CeSSIPle-

mated to make the determination of periodic orbits particu-
larly easy. This becomes an important consideration when
semiclassical methods such as trace formulas are being ap- This work was partially supported by a grant from the
plied. This is an important direction of future research sinceNational Science Foundation. We would like to thank
many of the interesting physical systems that can be modele@harles Jaffe for his insightful discussions.

We also provided a systematic means of finding the symme
ric periodic orbits of the bound billiard by way of symmetry
lines. As long as (6) retains the two spatial symmetrigg
andR, the six fundamental symmetry lines given in Table
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