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Chaotic scattering on a billiard

Vincent J. Daniels, Michel Vallie`res, and Jian Min Yuan
Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104-9984

~Received 26 June 1997!

We investigate chaotic scattering on an attractive step potential with a quadrupolar deformation. The phase
space features of the bound billiard are studied by using the notion of symmetry lines to find periodic orbits.
We show that the scattering dynamics is intimately linked to structures in the bound billiard~infinite potential
wall! phase space. The existence of preferred scattering directions is shown to be a consequence of large scale
features of the phase space such as the period-two orbits. Self-similarity in the scattering functions is directly
linked to unstable periodic orbits of the bound phase space. The main observations and methodology are
applicable to concave billiards in general.@S1063-651X~98!02002-9#

PACS number~s!: 05.45.1b, 03.65.Nk
iv
te
is

e-
or
s

.
en
e
t
er
b
u

W
d
i

W
al
m
he
e

n
a
d
o

ex
o

he
tu
llu
ic
ge

tia
W

ra-

nc-
ns

hs

son-

be-

a-

od-

e-
c
aled

th
en-
ar-
e
the
I. INTRODUCTION

The study of chaos in billiards has a long and product
history. Some of the earliest work with billiard systems da
back to Bunimovich and his proof that the stadium billiard
ergodic @1,2#. Also early on Berry showed that various d
formations of circular billiards exhibited regular, chaotic,
mixed behavior@3#. Volumes have been written on variou
kinds of closed billiard geometries@4–9# as well as billiards
with holes in the wall@10,11# to study scattering problems
However, little work has been done to study attractive pot
tial scattering with billiard geometries. This particular typ
of scattering finds applications in any physical system tha
well described by a discontinuous interface with a nonsph
cal geometry such as deformed quantum dots, nuclei, fi
optics, and semiconductor devices. In this paper we disc
the scattering on a quadrupolar deformation of a circle.
find that the scattering functions have strongly preferred
rections that persist for a wide range of deformation. A sim
lar effect is observed by No¨ckel and Stone@12# in light scat-
tering in an optical fiber with a quadrupole cross section.
show that this behavior is directly linked to the large sc
structure of the phase space, which does not change dra
cally as a function of the deformation. The details of t
chaotic scattering are related to the presence of unstabl
bits near the critical angle for escape.

We will begin by describing the model system in the co
text of a deformed nucleus and introducing the phase sp
mapping in Sec. II. In Sec. III we will examine the boun
phase space, in particular, we will use the symmetry lines
the map to determine the symmetric periodic orbits. The
istence of homoclinic orbits and thus the chaotic nature
the bound billiard system is shown. In Sec. IV we apply t
knowledge of the bound phase space dynamics to the s
of the scattering dynamics using some specific cases to i
trate general relationships. In Sec. V we discuss the impl
tions of the connections described in the paper and the
erality of the observations.

II. MODEL SYSTEM

The model is inspired by the simplest nuclear poten
shape, that is, a simple step potential in two dimensions.
571063-651X/98/57~2!/1519~13!/$15.00
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introduce an angle-dependent deformation described by a
dial shape function,r s(u). We are interested inr s(u), which
forms a closed curve in configuration space. A shape fu
tion typically used to describe small nuclear deformatio
can be written

r s~u!5@11bP2„sin~u!…#, ~1!

whereP2(x) is the second Legendre polynomial, all lengt
are scaled by the average nuclear radiusr 0, and b is the
deformation parameter. This shape function remains rea
able for describing nuclei as long asubu,2/7. Beyond this
the shape becomes ‘‘peanutlike,’’ that is, the boundary
comes partly convex. Forb50 we have the circular~unde-
formed! nuclear step potential. We will focus on deform
tions around the middle of this range,b'0.15. This shape
defines the location of the step so the potential is just a pr
uct of the well depth and the step function,

V~r ,u!52V0S„2@r 2r s~u!#…, ~2!

whereS(t) is the unit step function defined by

S~ t !5H 0, t,0

1, t.0.
~3!

Figure 1 shows a plot of the resulting potential forb50.15
andV051.0.

The Hamiltonian in polar coordinates is

H5
pr

2

2
1

pu
2

2r 2
2S„2@r 2r s~u!#…5e, ~4!

wheree is the scaled energy,e[E/V0, andV0 is the poten-
tial depth. The potential is a constant within the domain d
fined by r s(u); if the total energy is negative, the kineti
energy is also a constant and the total energy can be sc
away.

The traditional billiard problem is a bound problem wi
negative total energy with no possibility of escape. We g
eralize this problem to a scattering situation by sending p
ticles with positive total energy from outside the well. Th
trajectories followed by these particles may penetrate
1519 © 1998 The American Physical Society
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1520 57DANIELS, VALLIÈ RES, AND YUAN
well region, get temporarily trapped, and eventually esca
For this positive total energy case, the total energy canno
scaled away. The kinetic energy changes as the par
crosses the shape boundary; the dynamics at the boun
will depend on the ratio of the kinetic energy on either s
preventing energy scaling.

We now look briefly at the equations of motion; this
instructive yet not strictly necessary since we will be dev
oping a map for the system. In polar coordinates they ar

ṙ 5pr , ~5!

u̇5
pu

r 2
, ~6!

ṗr5
pu

2

r 3
2d„r 2r s~u!…, ~7!

ṗu5
]r s

]u
d„r 2r s~u!…. ~8!

It is clear from the equations of motion that whenr 2r s(u)
Þ0 the motion is integrable. In the event of an intersect
with the wall, r 2r s(u)50, both the radial and angular mo
mentum change. Zeroes of]r s /]u mark angles for which
there is no change in angular momentum.

Map

The dynamics can be rephrased in terms of a mapp
This follows from the fact that a particle will be deflecte
only when it is at the step and undeflected otherwise si
the potential is constant. This map will relate the coordina
in phase space from intersection to intersection with the
liard wall, the trajectory between collisions being straig
lines in configuration space.

There are many different representations for tw
dimensional maps. We will primarily use a map space (u,g)
whereu is the angle at which a trajectory intersects the sh
function. The second coordinate,g, is the angle between th
forward ~counterclockwise! tangent tor s(u) at the intersec-
tion and the incoming momentum vector. The forward ta

FIG. 1. A plot of the potential energy surface given by Eq.~2!
with b50.15 andV051.0. All lengths and energies are in dime
sionless units in this and subsequent figures.
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gent is defined byTW [drWs(u)/du. Other sets of coordinate
that we will use when convenient are (s,p) and (u,p), where
s is the arc length measured fromu52p andp5cos(g) is
the momentum tangential to the shape at an intersection.
resulting map in (u,p) has the form

un115 f ~un ,pn!,

pn115g~un ,pn!, ~9!

which we write in terms of the nonlinear map operator,M ,

S un11

pn11
D 5M S un

pn
D . ~10!

The algorithm for obtaining the map has two steps:
~i! Given the slope,m(un ,pn), and intercept,B(un ,pn),

defining the line along which the particle moves after thenth
intersection with the wall, find the intersection of this lin
with the shape function,r s(u). This providesun11.

~ii ! Transform the momentum vectorpW (un ,pn) after the
nth intersection into the new coordinate system defined
un11. This providesgn11 and thereforepn11.

The first step is the nonlinear part of the map. Genera
this step involves the solution of

r s~un11!sin~un11!5m~un ,pn!r s~un11!cos~un11!

1B~un ,pn!. ~11!

For r s(u) given by Eq.~1! this is a transcendental equatio
and so must be solved numerically. The second step invo
a coordinate system rotation and finding the new momen
direction. The latter depends on whether the particle is tra
mitted or reflected at the wall.

Consider a trajectory with momentumpW 0 before an inter-
section andpW 1 after. We decompose these vectors into co
ponents parallel and perpendicular to the tangent at the in
section. From the definition of the potential we see that
force will always be perpendicular to the shape and point
to the inside. Thus the parallel component of momentum
conserved so that

p0cos~g0!5p1cos~g1!, ~12!

wherep0 andp1 are the magnitudes of the momenta and
constant everywhere within a given region and

pi5A2$E2V@r 2r s~u!#%.

Equation~12! is precisely Snell’s law from geometric optic
with the refractive indices beingp0 and p1 and the angles
measure with respect to the tangent rather than the nor
The behavior of a trajectory intersecting the shape functio
analogous to that of a light ray striking a polished gla
surface. The obvious difference is that light can be b
transmittedand reflected from the surface while a classic
particle is transmittedor reflected. The rule for transmitting
particle across the interface is simply that if it can be tra
mitted it will be, otherwise it will be reflected. More pre
cisely, if
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57 1521CHAOTIC SCATTERING ON A BILLIARD
ucos~g0!u,p1 /p0 , ~13!

the particle is transmitted with the angleg1 given by Eq.
~12!. In analogy with total internal reflection in optics,g1
5p/2 leads to

ucos~g0!u5p1 /p0 . ~14!

The solutions of Eq.~14!, denoted bygcr
1 andgcr

2 , are cen-
tered ong5p/2. Particles incident within

gcr
2,g,gcr

1 ~15!

cross the billiard boundary.
A particle not transmitted across the boundary must s

in the region it came from. Since the parallel component
momentum is still conserved, Eq.~12! still holds with p0
5p1, yielding

cosg05cosg1 . ~16!

This embodies the law for specular reflection, which in o
coordinate system must be taken to beg152g0, that is,
reflection by the same angle with respect to the tangent. T
is the only possibility for the bound problem, namely,E
,0.

Applying these rules to scattering billiards leads to t
following results. A particle incident from the outsid
~asymptotic region! will always be transmitted to the insid
~interaction region!. On the outside we havep05A2E while
on the insidep15A2E12 so

p1 /p05A111/E.1.ucosg0u;E.0. ~17!

On the other hand, for a particle incident from the inside

p1 /p05AE/~E11!5ucos~gcr
6!u,1;E.0. ~18!

So the particle may be transmitted@ ucos(g0)u<AE/(E11)#
or reflected@ ucos(g0)u.AE/(E11)#. Equation ~18! shows
that there is always a critical angle for reflection no mat
how energetic the particle is.

From the scattering perspective we are only intereste
trajectories that will intersect the shape function. These
teresting scattering initial conditions will be in one-to-o
correspondence to points in the bound map. However, w
a scattering trajectory is exiting the interaction region
map point will have a negativeg value between 0 and2p.
The g value is always positive for the bound map and t
scattering map until escape. We transform the exit dom
into the region between thegcr lines ~see Fig. 8! by using the
positiveg of the bound particle with the same incident ang
The entire domain of the scattering map therefore beco
the same as that of the bound map; this is crucial in und
standing the connection between these two maps. The
main for both maps is 0<g<p and2p,u<p. The phase
space of the scattering map is partitioned into the asympt
region betweengcr

2 and gcr
1 and the interaction or boun

region, which makes up the rest of the phase space. Thu
first and last bounce of scattering trajectory are always in
rangegcr

2,g,gcr
1 .
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III. BOUND MAP AND PHASE SPACE

The bound and scattering maps share the same p
space; it follows that the scattering problem is influenced
the same structures in phase space as that of the bound
With this in mind we first study the bound problem.

A. Periodic orbits and symmetry lines

Knowledge of the periodic orbits is key to understandi
the phase space of the map. Several orbits and their
coordinates can be guessed quite easily; for instance,
period two ~P2! orbits, one along thex axis and the other
along they axis. While the existence of others may be ob
ous, their coordinates are not easy to find; like the per
three~P3! and four~P4! orbits. There are still others whos
mere existence may not be as obvious, i.e., those gene
via bifurcations of the above mentioned orbits.

An elegant construct for finding periodic orbits in ‘‘re
versible’’ maps involves the use ofsymmetry lines@13–16#.
These follow from the fundamental symmetries of the pro
lem, in our case time reversal invariance and geometr
symmetries ofr s(u). This leads to three distinct symmetr
operations for our map: momentum reversal (Rp), reflection
about thex axis (Rx), and reflection about they axis (Ry).
They are defined by

RpS u

pD 5S u

2pD , ~19!

RxS u

pD 5S 2u

p D , ~20!

RyS u

pD 5S sgn~u!p2u

p D , ~21!

with

sgn~u![H 1, u>0

21, u,0.

The operatorsRp ,Rx ,Ry are clearly their own inverses. Eac
also inverts the map,

M215TMT , ~22!

whereT represents any one of the three operators,Rp ,Rx , or
Ry .

All reversible area preserving maps can be factored in
product of twoorientation reversing involutionsor symme-
try operators@13#,

M5I1I0 . ~23!

We are interested in the three factorizations of the map gi
by

M5I1I05$MT %T. ~24!

So

I05T, ~25!
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1522 57DANIELS, VALLIÈ RES, AND YUAN
I15MT . ~26!

The above operators represent the first two in an infin
hierarchy of symmetries defined by

In5MnI0 , n50,1, . . . , ~27!

whereMn representsn compositions ofM .
To utilize this infinite hierarchy of symmetries we need

determine the invariant sets orsymmetry linesassociated
with each of the involutions,I n . The symmetry lines are th
solutions of

Gn :$juInj5j%, ~28!

wherej[(u,p) is a point in the map. The symmetry line
satisfy the following recursion relation@14#

MmGn5G2m1n . ~29!

Letting n50 will generate all of theevensymmetry lines:

MmG05G2m .

Letting n51 will generate all of theodd symmetry lines:

MmG15G2m11 .

We will call the linesG0 andG1 the fundamental symmetr
lines of the map. The fundamental symmetry lines for ea
of the possible involution pairs can be calculated analytica
and are presented in Table I.

Note that there are two branches for each of the spa
symmetry lines while there is only one branch for theG0

p

symmetry line and no solution forG1
p . The immediate resul

of the nonexistentG1
p is that there are no odd symmetry line

for momentum reversal. It follows that there are no mom
tum reversal symmetric odd period orbits.

A periodic orbit is defined by

TABLE I. The symmetry linesG0 andG1 and their branches fo
the symmetriesRx , Ry , andRp . The second subscript refers to th
different solutions or branches of Eq.~28!.

Symmetry line Equation Domain

G0,0
x u(p)50 ;p

G0,1
x u(p)5p ;p

G0,0
y u(p)52p/2 ;p

G0,1
y u(p)5p/2 ;p

G0
p p(u)50 ;u

G1,0
x

p(u)5
r s8(u)sin(u)1rs(u)cos(u)

Ar s
2(u)1r s8

2(u)

u>0

G1,1
x

p(u)52
r s8(u)sin(u)1rs(u)cos(u)

Ar s
2(u)1r s8

2(u)

u,0

G1,0
y

p(u)5
r s8(u)cos(u)2rs(u)sin(u)

Ar s
2(u)1r s8

2(u)
0<uuu,

p

2

G1,1
y

p(u)52
r s8(u)cos(u)2rs(u)sin(u)

Ar s
2(u)1r s8

2(u)

p

2
<uuu,p

G1
p — —
e

h
y

al

-

Pn :$juMnj5j%, ~30!

that is, then period points are invariant undern applications
of the map. This set includes orbits whose periods are d
sors ofn as well. The important result from the symmet
line theory@15,13# is

GnùGm,Pn2m . ~31!

Using this method the search for symmetric periodic orb
reduces to finding the intersections between different sy
metry lines.

Figure 2 shows the symmetry lines fromG0
x to G9

x for the
deformation,b50.15. Each of these lines has two branch
the two vertical lines atu50 andu5p areG0,0

x andG0,1
x and

the two branches 0 and 1 ofG1
x to G9

x start at (0,p) and
(p,p), respectively. Periodic orbits can be obtained from
intersections of these symmetry lines. As an example Fig
shows the intersectionG0

xùG9
x ~we drop thex superscript

label from here on!.
The periodic orbitsP3 andP9 are located at the intersec

tions of these two lines. The orbits are labeled by their win
ing numbers, which is determined by counting the numbe
times, k, the symmetry lines have ‘‘wrapped around’’ th
cylinder defined byu beginning with the smallestg. We will
come back to the fact that the orbits labeled 6/9 and
consist of three intersections each. The winding numbe
the orbits obtained fromGn, jùGm,i is formally given by

v5H 2ukm2knu
um2nu

, i 5 j

2ukm2knu11

um2nu
, iÞ j ,

~32!

with km50, . . . , umu21, kn50, . . . , unu21,

FIG. 2. Both branches of the ten symmetry lines fromG0
x to G9

x

for b50.15. All angles are in radians in this and subsequent figu
unless otherwise noted.
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57 1523CHAOTIC SCATTERING ON A BILLIARD
wherekm (kn) is the number of times theGm,i (Gn, j ) sym-
metry line has wrapped around the cylinder. As shown
Fig. 3 theG0,0ùG9,0 and G0,0ùG9,1 gives us all of theP9
orbits that have a vertex atu50 and reflection symmetry
about thex axis. All of the P9 orbits labeled in Fig. 3 are
shown in Fig. 4. TheG0,1ùG9,0 andG0,1ùG9,1 give all of the
P9 orbits that have a vertex atu5p and reflection symmetry
about thex axis.

B. Bifurcations

Bifurcation diagrams summarize the behavior of dynam
cal systems as parameters are varied; they describe how

FIG. 3. The symmetry linesG0,0
x , G0,1

x , G9,0
x , and G9,1

x for b
50.15. The orbits found alongu50 are labeled by their winding
numbers.

FIG. 4. TheP9 orbits resulting from Fig. 3.
n

-
pe-

riodic orbits are created, destroyed, or collide. The symme
lines can be used to obtain bifurcation information. In Fig
there are three orbits labeled with winding number 6/9~and
three with 3/9). The local twisting of theG9 symmetry line
indicates that a bifurcation of some kind has occurred
some smallerb value. In Fig. 4 the sequence of orbits on t
right shows the three orbits resulting from this twist of t
symmetry line. The ordering is as shown: the 2/3 orbit
between the twoP9 orbits labeled 6/91 and 6/92. It is
instructive to examine this segment of the symmetry lines
a function ofb to gain a better understanding of the nature
this bifurcation.

Figure 5 shows a blow up series of theG9,0ùG0,0 for
different values ofb ranging from before to after the bifur
cation. This series reveals that before the bifurcation ther
only the 2/3 orbit ~e.g., b150.12175). At b5b2
50.121 787 there is a saddle center bifurcation that cre
stable (6/91) and unstable (6/92) P9 orbits. After this bi-
furcation the twoP9’s are next to each other and theP3 is
below them~e.g.,b350.1218) until the unstableP9 collides
with the P3 orbit atb5b450.12187 and they pass throug
each other, resulting in the situation pictured in Fig. 4. Figu
6 shows the phase space around one of theP9 fixed points
~a! after the tangent bifurcation but before the collisionb
5b3) and ~b! after the collision (b5b550.12195). This
type of bifurcation is referred to by MacKay@13,17# as an
‘‘ m bifurcation’’ and is a generic bifurcation of area preser
ing maps. The bifurcation diagram for this bifurcation
shown in Fig. 7. The original orbit is labeled by its windin
number, 6/9. TwoP9 orbits are created in a saddle cen
and the unstable one passes through the original period
orbit. The two steps to this bifurcation are the saddle cen
creation of two orbits followed by the collision of one o
these with the generating orbit. These two steps occu
different values ofp5cos(g); in general, they may occur a
the same value ofp, Dp50. All of the generic bifurcations

FIG. 5. A blowup of G9ùG0 around the ‘‘6/9’’ intersections
showing deformation parameters from before the bifurcation to
ter the bifurcation. The values of the deformationsbi are quoted in
the text.u has units of 1024 rad.
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1524 57DANIELS, VALLIÈ RES, AND YUAN
of area preserving maps are discussed in several refere
@13,18–20,17#.

C. The P2 and P4 orbits

The current investigation is primarily focused on a billia
with a deformation ofb50.15. Atb50 the billiard is circu-
lar and the phase space consists of periodic orbits with ra
nal winding numbers~resonant tori! and quasiperiodic orbits
with irrational winding number~irrational tori!. As theb is
increased from zero the resonant tori are all destroyed, le
ing isolated periodic orbits. On the other hand, many of
irrational tori persist forb.0. These irrational tori stretch
across the phase space, creating natural momentum bo
aries. Atb50.15 nearly all of the original irrational tori hav
been broken, leaving nothing but isolated islands and cha
orbits. So, in principle there is no dynamical partitioning
the phase space into different momentum regions as is
case with smaller deformations. Thus the phase space is
pected to be quite complicated. Yet, in spite of this compl
ity the low period orbits play a key role in the dynamics.

Of particular importance are theP2 andP4 orbits. There
are two P2 orbits, one stable and the other unstable. T
stable orbit lies along thex axis and has the map coordinat

FIG. 6. Phase space near one of theP3 fixed points~a! for b
50.1218 and~b! b50.12195.

FIG. 7. The bifurcation diagram for the ‘‘m bifurcation’’ asso-
ciated with the 2/3 orbit.
ces
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(0,p/2),(p,p/2); the two periodic points are surrounded b
large regions filled with KAM tori. Figure 8 shows the KAM
regions associated with the stableP2 orbit along with several
other stable periodic orbits and two chaotic trajectories. A
seen in this Fig. 8 are the stableP4 orbits with winding
number 1/4 and 3/4. Their tori are surrounded by fourP8
orbits created during an ‘‘m bifurcation’’ of theP4 orbits. In
configuration space the stableP4 is diamond shaped with
vertices atu50, 6p/2, andp.

The unstable counterparts of theP2 andP4 orbits men-
tioned above are equally important. The unstableP2 orbit
lies along they axis and has the map coordinates (p/2,p/2),
(2p/2,p/2). The unstableP4 orbits trace out a rectangle i
configuration space, with the long sides parallel to they axis.
The 1/4 orbit follows this path in a counterclockwise dire
tion while the 3/4 orbit follows the same path in a clockwi
direction. Unstable orbits are characterized by their sta
and unstable manifolds. Figure 9 shows approximations
the stable manifolds of the unstableP2 orbit and theP4 orbit
with winding number 3/4. A manifold is an invariant se
under the mapping~or inverse mapping!; in other words, a
point on a manifold maps to a point on a manifold. Iterati
a suitable subset of points belonging to the manifold w
generate an approximation to the whole manifold. The s
plest ~approximate! subset of the manifold can be obtaine
by linearizing the map around a periodic point. The line
ized map provides the ‘‘stability matrix,’’ which, for simple
closed billiards, has a general analytical solution given
Berry @3#. The stability matrix can be diagonalized to find th
stable ~negative eigenvalue’s eigenvector! and unstable
~positive eigenvalue’s eigenvector! directions at the periodic
points. To generate the stable manifolds shown in Fig. 9
begin with a large (105) set of initial conditions from a smal
segment (1028) of a line lying along the stable direction an
centered on a periodic point. These initial conditions are th
iterated under the inverse map,M21, for about 30 iterates
Beyond;30 iterations small deviations of the initial set o
points from the actual manifold start to become large, p
ducing large deviations from the actual manifold.

The P2 andP4 orbits’ manifolds and KAM regions oc
cupy a large portion of the map and so are important
understanding the dynamics. However, there are an infi
number of other periodic orbits that play a role in the dyna
ics. The ones that are particularly important for the analy
in the next section are periodic orbits whose stable isla
have bifurcated away, leaving nothing but unstable perio
points and their manifolds. A particular set of such orbits th
we will examine more closely are those with winding num
bers between 1/2 and 3/4. The manifolds of these orbits
sandwiched between and intimately intertwined with theP2
andP4 manifolds of Fig. 9. In the next section we will rela
the gross scattering properties to theP2 orbits and the finer
scale structure of the scattering to the low period unsta
orbits near the asymptotic region of the scattering ph
space.

IV. SCATTERING

A scattering experiment consists of launching positive
ergy particles from an asymptotic region towards an inter
tion region and observing their ‘‘states’’ upon leaving th
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57 1525CHAOTIC SCATTERING ON A BILLIARD
interaction region. For the billiard problem the asympto
region is the area outside the billiard and the interaction
gion is the area inside and including the billiard bounda
The ‘‘state’’ observed on leaving the interaction is often t
escape angle,F, that a trajectory makes to an arbitrary fixe
axis. Another interesting quantity to observe is the ‘‘del
time,’’ which is defined as the amount of time a partic
remains in the interaction region.

In terms of the bound billiard map the asymptotic regi
is defined by the area between the critical angles,gcr

6 . The
interaction region is the area abovegcr

1 and belowgcr
2 . Fig-

ures 8 and 9 each show the bound phase space with
critical angle linesgcr

6 separating the asymptotic from th
interaction region. A scattering trajectory will have exac
two map points in the asymptotic region~betweengcr

6); one
corresponding to its entry into the billiard and the other c
responding to its exit. In general a scattering trajectory m
also have an arbitrary number of points in the interact
region of the map corresponding to being trapped in the
tential region. The number of map points,n, that a trajectory
has in the interaction region corresponds to the numbe
times it hits the billiard wall without escaping~bounces!; this
is effectively equivalent to the delay time. Thus the scatt
ing map looks just like the bound map with horizontal lin
corresponding to the critical angles dividing the phase sp
into asymptotic and interaction regions.

In scattering problems one typically defines an impact
rameter that is a simple function of initial conditions. F
two-dimensional nonintegrable dynamical systems a gen
analysis requires that the space of impact parameters als
two dimensional. However, as we will demonstrate below
well chosen one-dimensional impact parameter is suffic
to characterize the chaotic nature of our billiard scatter

FIG. 8. The map featuring some of the remaining KAM regio
around the stableP2, P4, and P6 orbits as well as some highe
period orbits. Also shown are twoP6 island chains around theP2
and two chaotic trajectories. The inset is to help the reader iden
the periodic orbits.
-
.

he

-
y
n
o-

of

r-

ce

-

al
be

a
nt
g

system. For our analysis we launch particles from a line
fixed x0 outside the well and parallel to they axis with fixed
momentum componentspx05A2E, andpy050. The impact
parameter isy0. We will record the scattering functionsF
and n as functions ofy0. The angleF is measured with
respect to the1x axis. Figure 10 shows a series of enlarg
ments of the scattering functionF(y0) for b50.15. The

fy

FIG. 9. The stable manifolds of the 1/2 orbit and the 3/4 or
along with thegcr

6 lines for E50.2856. Also shown is the set o
initial conditions, I , corresponding toy0>0, py050, and px05

1A2E.

FIG. 10. A series of enlargements of escape angle vs imp
parameter forE50.2856 andb50.15. The large hash marks on th
y0 axis indicate the region enlarged in the next level. The trajec
ries are all launched from the left of the potential region withpy

50 andpx5A2E. The deformation here isb50.15 and the energy
is E50.2856. The escape angle is the angle of the momentum
tor measured from the1x axis.
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level-0 plot excludes the relatively uninteresting range
impact parameters 0,y0,1.1 where trajectories bounc
only one, two, or three times before escaping. Note tha
the range of impact parameters shown all trajectories bou
four or more times before escaping. There are several in
esting features of these plots. First, there are clearly reg
where the scattering is regular, i.e., piecewise continuo
separated by ‘‘unresolved’’ regions. Second, the ‘‘odd’’ e
largements~e.g., levels 1 and 3! are mirror images of the
‘‘even’’ enlargements. Third, the scattering is predominat
in the forward and backward directions while other ang
are clearly excluded, indicating preferred scattering dir
tions. Fourth, the figures show a striking self-similarity th
persists on all scales attainable with double-precision floa
point arithmetic. We will address each of these points in t
and then ask whether such features persist when we allow
possible scattering initial conditions.
The behavior of the scattering function of Fig. 10 is t
hallmark of a chaotic scattering system@21–24#. The smooth
regions are sets of initial conditions that bounce the sa
number of times before exiting. They are separated by
gions where the escape angle appears unresolved or ‘‘
otic’’ as a function of impact parameter. As Fig. 10 sho
this behavior persists to higher magnification of an un
solved region so that at any magnification there are alw
chaotic regions in the escape angle function. Figure
shows~top! the number of bounces,n, before escaping ver
sus the impact parameter and~bottom! the escape angle ver
sus impact parameter~this is Fig. 10, level 0!. This shows
that the chaotic regions are related to trajectories that bou
a large number of times before escaping. The more boun
a particle undergoes the more sensitive the outgoing ang
to small displacements in the impact parameter. The sin
larities in the functionn(y0) form an uncountable infinity of
points; the impact parameters that lead to infiniten form a
fractal set.

FIG. 11. Top: the number of bounces,n, before escaping vs the
impact parameter,y0. Bottom: the escape angleF as a function of
impact parameter.
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The origin of this fractal set lies in the stable manifolds
the homoclinic orbits of the system. The manifolds the
selves are of measure zero in phase space so that a ty
initial condition will not fall exactly on a manifold. How-
ever, initial conditions that find themselves near one of th
manifolds will tend to move toward the periodic orbit befo
moving away. If the periodic orbit is entirely in the intera
tion region then the particle may be trapped for an arbitra
long time as it approaches the periodic orbit. For chao
scattering to occur these manifolds must reach into
asymptotic region where the initial conditions live. For b
liard systems the asymptotic region is defined by the criti
angles for escape. Thus there can be chaotic scattering
if the stable manifolds of periodic orbits that live in the in
teraction region cross the critical angle.

A. P2 and P4 manifolds

Figure 9 shows an approximation to the stable manifo
of the P2 orbit and one of theP4 orbits along with the
critical angle lines defining the asymptotic region. We a
show the line of initial conditions,I , that produced the re
sults in Figs. 10 and 11. TheP4 manifold lays on theP2
manifold and mixes with it at their ‘‘interface.’’ In betwee
the P4 and P2 manifolds there are an infinite number
other unstable periodic orbits whose stable counterpart p
odic orbits have bifurcated at smaller deformations a
whose stable manifolds are intimately intertwined with t
P2 andP4 manifolds. As we will see below, these orbits a
responsible for the structure of the scattering functions
particular, the scaling and relative sizes of smooth regi
seen in the scattering functions.

Scattering trajectories that are initialized near the sta
manifolds of periodic orbits living in the asymptotic regio
will have very short scattering times. For example, the u
stableP2 orbit is such an orbit. Its stable manifold dominat
the asymptotic region so that most initial conditions will fin
themselves close to it; the resulting trajectories will boun
only a few times, if they bounce at all, before escapin
Scattering trajectories that are initialized near the sta
manifolds of periodic orbits that live in the interaction regio
will exhibit long scattering times. TheP4 orbit is an example
of this type; its stable manifold reaches the asymptotic reg
where scattering trajectories may come close to it.

B. Preferred scattering directions

The presence of the large KAM zones around the sta
P2 orbit restricts the manifolds~and therefore, the chaoti
trajectories! to the two ‘‘neck’’ regions aroundu56p/2. It
is ultimately a result of the existence of largeP2 KAM zones
in the phase space that restricts particles to exit in either
of these neck regions. The extent of theP2 manifolds limits
the momentum range of the escaping particles. Thus theP2
orbits are the source of the bidirectional nature of the sc
tering functions. In this section we present a way to ge
more quantitative measure of the degree of directiona
found in the escape angle function.

The preferred directions apparent in Fig. 10 are indep
dent of the particular choice of scattering initial condition
That is, the same preferred directions and range of esc
angles result from nearly any line of initial conditions th
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57 1527CHAOTIC SCATTERING ON A BILLIARD
we choose. To show this consider a set of initial conditio
consisting of the two linesgcr

1 and gcr
2 under one forward

iteration of the map. Iterating the boundary between
asymptotic and interaction regions in this way we obtain
image of the boundary one bounce later. Since the map
is orientation preserving the phase space abovegcr

1 maps to
the phase space aboveMgcr

1 and belowgcr
2 maps to below

Mgcr
2 . Figure 12 clearly shows there are well-defined ar

of the asymptotic region into which trapped particles m
go. The allowed regions of escape for particles that h
bounced at least once are defined by the four shaded lob
Fig. 12. It also shows that at this energy (E50.2856) and
deformation (b50.15) particles that are trapped in the upp
phase space~clockwise rotating orbits! will never reach the
lower phase space~counterclockwise rotating orbits!.

The areas defined by the shaded lobes of Fig. 12 are e
converted into escape angle ranges. The plot shown in
13 shows these escape angle ranges overlaid on the bi
shape for initial conditions abovegcr

1 , that is, clockwise ro-
tating orbits. We find that the escape angle must fall wit
the two limits given by

21.0709,F,0.9355,

24.2125,F,22.0609. ~33!

These limits apply to all initial conditions starting anywhe
in the upper interaction region. The range of escape an
observed in Fig. 10 certainly falls within these bounds. La
we will address the fact that the escape angle ranges
served in Fig. 10 are much smaller than the ones given in
~33!. Thus, we have an upper bound on the range of esc
angles for any set of initial conditions in the upper intera
tion region. The ranges can be reflected aboutF50 to ob-
tain the range for initial conditions in the lower interactio
region.

We can verify the existence of the preferred directions
well as add distribution information by launching a large
of initial conditions evenly distributed in the asymptotic r

FIG. 12. The critical angle lines and their images under o
iteration of the map forb50.15 andE50.2856. The shaded region
represent areas through which particles that have bounced at
once will exit.
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gion. We consider 106 initial conditions in the rectangle
given by 2p,u,p and p/2,g,gcr

152.061 596~corre-
sponding toE50.2856! keeping track of the number o
bounces before exiting. Figure 14 shows a histogram of
number of trajectories,N, binned according to~a! escape
angleF and~b! theu value at escape,Q. This figure shows
trajectories that have bounced four or more times~there are
no three or five bounce trajectories!. Here we see that the
range of escape anglesF is precisely what is observed i
Fig. 10. Had we included ‘‘fly-by,’’ one bounce, and tw
bounce trajectories in the histogram the directionality wo
still be apparent. However, the range of escape angles w
be wider. If we continue the process of excluding the few
bounces further we will find the distribution and range r
mains essentially unchanged. This rapid convergence w
the number of bounces implies that it takes about fo

e

ast

FIG. 13. The escape angle ranges obtained from the sha
lobes of Fig. 12 overlaid on the billiard shape for initial conditio
abovegcr

1 .

FIG. 14. The number of trajectoriesN binned by ~a! escape
angleF and ~b! exit angleQ including all trajectories with more
than three bounces. The data are from 106 initial conditions
launched between2p,u,p andp/2,g,2.061596 correspond
ing to E50.2856 and a deformation parameter ofb50.15.
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1528 57DANIELS, VALLIÈ RES, AND YUAN
bounces for a chaotic scattering trajectory to ‘‘forget’’ whe
it came from. This is so since the distribution of outcomes
all possible initial conditions is well reproduced by a sm
sample of initial conditions. Of course the small sample
initial conditions cannot be completely arbitrary; it must pa
through a ‘‘relevant’’ region of phase space. What precis
constitutes the relevant region is the subject of the next p
graph.

C. Chaotic region

We can invert the question answered by Fig. 12 and a
‘‘What part of the asymptotic region leads to trajectories t
bounce at least once?’’ To answer this we take the crit
angle lines and iterate them once with the inverse map to
Fig. 15. Trajectories beginning in the shaded lobes will en
the interaction region for at least one bounce. Consider
picture overlaid on Fig. 9. A large portion the shaded reg
of Fig. 15 is occupied by the stable manifold of theP2 orbit.
This portion of the shaded regions will lead to nearly all
the one and two bounce orbits. The manifolds that lie
tween theP2 andP4 are responsible for the longer orbit
Most important are unstable periodic orbits whose perio
points lie entirely in the interaction region but whose ma
folds reach into the asymptotic region. These are respons
for the structure of the scattering functions.

To illuminate this connection we look at the escape ti
functions associated with the series of enlargements of
10. These are shown in Fig. 16. We choose to enlarge
chaotic regions between the two largest smooth regions
side a chaotic band; thus we are looking at the largest s
feature of the scattering functions. Clearly one level can
scaled into another. We have already identified then scale by
offsetting each enlargement by seven. In Fig. 17 we h
plotted the trajectories associated with the impact param
at the center of the largest smooth regions in each level,
n56 of level 0 in Fig. 16. We see that these trajectories
start near the 5/7 orbit~shown in Fig. 18! and follow it
around one more time for each enlargement. This imp
that the period seven orbit should have a periodic point v

FIG. 15. The critical angle lines and their images under o
iteration of the inverse map for b50.15 and E50.2856. The
shaded regions represent areas that lead to trajectories that b
at least once.
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close to the asymptotic boundary and, since the trajec
can bounce at all seven vertices, all of its periodic points
in the interaction region. This is verified in Fig. 19, whic
shows an approximation to the 5/7 manifold, the circles r
resent the periodic points of the orbit.

The P7 orbit is also responsible for the length scalin
between levels in Fig. 16 by way of its stable manifold.

e

nce

FIG. 16. Number of bouncesn before escaping as a function o
impact parametery0. This series covers the same impact parame
regions as Fig. 10. Then axis is offset by seven and truncated to
range ofDn520 at each enlargement to illuminate the role of t
P7 orbit and enhance the self-similarity between enlargement
els.

FIG. 17. The shortest orbits in each of the levels of Fig. 16. T
trajectories are chosen from the center of the largest smooth reg
in each level.
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57 1529CHAOTIC SCATTERING ON A BILLIARD
Fig. 20 we plot the natural log of the length of the longe
regions in each plot, ln(Dy0), versus the number of bounce
to escape,n. The points are well fit by a straight line with
slope ofm520.4867. Since the set of initial conditions
transverse to the 5/7 manifold the scaling relationship in
scattering functions is a direct measure of the scaling of
tances between ‘‘fingers’’ of the 5/7 manifold. This sugge
that the scale factor found above may be related to
Lyapunov exponent of the 5/7 orbit. The Lyapunov expon
is found to bel'0.42. The details of this relationship wi
be investigated elsewhere. Figure 21 shows a sketch of
stable manifoldWs , periodic point markedP, the line of
initial conditionsI , and thegcr

1 line. Note that we have rep
resented the spacing between intersections ofI and Ws as
approximately constant when, as we have just seen, the s

FIG. 18. The 5/7 orbit that is approached by the orbits in F
17.

FIG. 19. An approximation to the 5/7 manifold. The period
points are indicated by the black dots.
t
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ing should decrease exponentially as the periodic poin
approached.

Figure 21 also provides an explanation for the reflect
symmetry between the adjacent levels of Fig. 16. For
stance, to scale level 1 into level 2 we must reverse
orientation of the impact parameter as well as scale
lengths. This orientation reversing arises from the fact t
the initial conditions for adjacent levels fall on alternatin
sides of the stable manifold. We see that the line of init
conditions associated with each level alternates from
side of the manifold to the other. In terms of the manifo
sketched in Fig. 21 mapping the finger labeled ‘‘0’’ into th
finger labeled ‘‘1’’ requires reflectingI about their common
point and rescaling. We must also reflect about the line
initial conditions and scale, however, this transformati

.
FIG. 20. A plot of ln(Dy0) vs n with the Dy0’s are the lengths

of the longest region in each of the levels of Fig. 16. Also shown
a linear fit to this data giving a slope ofm520.4867.

FIG. 21. A sketch of the stable manifold near a periodic point
the interaction region~abovegcr

1). The line labeledI represents
initial conditions. The numbers correspond to the level of enlar
ment of scattering functions.
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cannot affect the one-dimensional scattering functions.
Now that we understand the mechanism that produces

largest scale features of the scattering functions, below
examine the next largest features. To this end we looked
set of pictures similar to those of Fig. 16 where the enlar
ments are taken from the leftmost chaotic region in the le
0 plot (1.116&y0&1.118). This series of enlargements loo
identical to Fig. 16, except for the range of impact para
eters involved. Here, however, we find that the larg
smooth regions in each level are 10 bounces apart. The
responsible for the scaling in this series is the 7/10 orbit. T
length scales by 0.45 between levels while the Lyapun
exponent of the 7/10 orbit isl'0.400. The same reasonin
that we used for the 5/7 orbit applies here; the characteris
of the unstable 7/10 manifold are responsible for the s
similar nature of these structures.

The process of identifying prominent smooth regions a
their adjacent chaotic regions with certain periodic orbits c
be continued. The next orbit found in this way is the 8/1
The pattern that emerges from this process is that the lar
features are controlled by the lowest period orbits left in
interaction region. For the range of energies for which
3/4 orbit is still in the interaction region this orbit behav
approximately like a boundary orbit; the very finest featu
~longest escape time trajectories! of the scattering function
show orbits converging to the 3/4 orbit. This is only appro
mately true since there are higher winding number orb
whose manifolds find their way past the 3/4 and reach
asymptotic region. The property of theP4 orbit that distin-
guishes it as a boundary orbit is the fact that the stableP4
orbit has not yet been destroyed by bifurcations while all
the other orbits between theP2 andP4 are unstable. TheP4
KAM tori that remain force the flux of trajectories into cha
nels containing the unstable orbits that slow the momen
diffusion of the trajectory.

Using the approximation that the 3/4 orbit presents
phase space boundary we can develop an algorithm to
dict the sequence of orbits responsible for the successi
smaller features of the scattering function. Consider all p
odic orbits whose winding numbers are between the 3/4 o
and the next lower period orbit that falls in the asympto
region, in the current example this is the 2/3 orbit. The orb
are ordered from the lowest winding number to the high
up to some desired periodicity. If an orbit has a perio
point in the asymptotic region, then all orbits of lower win
ing number are also in the asymptotic region and are
cluded. The remaining orbits are then ordered from the lo
est period ~largest structures! to the highest ~smaller
structures!, excluding the boundary orbit 3/4. The sequen
for E50.2856 is shown in Table II for orbits up toP19. The

TABLE II. The lowest period orbits up toP19 with winding
numbers between 2/3 and 3/4. The bottom row of numbers or
them from lowest to highest period. TheP4 is effectively a bound-
ary orbit and is labeled bỳ , indicating it as the source of the fine
scale structure.

2
3

11
16

9
13

7
10

12
17

5
7

13
18

8
11

11
15

14
19

3
4

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
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location of the cutoff winding number~indicated by the ver-
tical bar in Table II! for a fixed deformation is a function o
energy. We see that as the energy is increased, orbits
removed from the sequence and the scaling properties o
scattering function change.

V. CONCLUSIONS

We have studied chaotic scattering on a quadrupole
formed billiard. The results obtained have general applica
ity despite our use of a specific billiard geometry. W
showed the existence of preferred chaotic scattering di
tions. We have explained the origin and organization of
self-similar structure of the scattering functions in terms
unstable periodic orbits of the bound billiard system. Pe
odic orbits of the bound system were found using symme
line theory and the stable manifolds of some of the unsta
orbits were calculated.

We have shown that the existence of preferred scatte
directions is independent of the choice of initial condition
This is true provided the chosen set of initial conditions
tersect the stable manifolds of periodic orbits in the inter
tion region. The escaping trajectories are restricted to leav
the billiard domain in the regions of sharpest curvature. T
‘‘localization’’ of the chaotic scattering trajectories resul
from the existence and persistence of largeP2 KAM regions
in the bound phase space. This forces trajectories to be
neled into the two regions between the tori, which cor
spond to the large curvature regions of the billiard. The t
jectories are also localized in escape angle. This is
consequence of the degree of stretching of the phase s
enforced by theP2 manifolds. Increasing the deformation
will increase the stretching of the phase space, making
allowed escape angle range larger~for a fixed energy!. The
only requirement for theP2 orbits to play such a central rol
is that the billiard wall be concave everywhere. The deta
of the functional form of the shape are not important as lo
as integrable billiard geometries~circle, ellipse! are avoided.

The nearly perfect self-similar structure of the scatter
functions is a result of the fractal structure of the sta
manifolds of periodic orbits in the interaction region. Ea
such orbit contributes to the structure and scaling of the s
tering functions. The most influential orbits, in the sense t
they are associated with the scaling of the chaotic regi
separated by the largest smooth regions, are the lowes
riod orbits that are still in the interaction region at the chos
scattering energy. Since the interaction region is defined
the particle energy, changing the energy will change the s
tering functions. However, for small changes in energy
which the lower period orbits remain in the interaction r
gion the large scale structure should remain roughly
changed. Only when the lowest period orbits fall in t
asymptotic region will there be a major structural change
the scattering functions.

We presented a general algorithm for relating the perio
orbits to the self-similarity of scattering functions. There a
however, several caveats that apply to this simplistic pictu
First, we have assumed that the Birkoff orbits, those t
arose from the undeformed circular billiard, are the only co
tributors to the structure of the scattering functions. T
view omits effects due to other orbits such as bifurcations

rs
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57 1531CHAOTIC SCATTERING ON A BILLIARD
the Birkoff orbits. For the large scale structure that we ha
examined the omission seems justified but we expect tha
existence of these orbits should have some noticeable e
on smaller scales. The other caveat concerns our abilit
sort out the relative sizes of smooth and chaotic regio
Beyond the three regions that we have examined and at
uted to the lowest three periodic orbits it is difficult to dete
mine where to look next. Nevertheless, the algorithm s
sheds some light on the origins of the structure of the s
tering functions. With these considerations in mind the al
rithm will also be applicable to higher-energy scatteri
where theP4 orbit is in the asymptotic region. The 3/4 orb
then becomes the lower boundary in the same sense tha
1/2 orbit is a lower boundary in specific example discuss
The upper boundary will be the next higher period orbit w
KAM tori remaining. For the deformation used througho
this paper (b50.15) that orbit is the 5/6.
We also provided a systematic means of finding the symm
ric periodic orbits of the bound billiard by way of symmet
lines. As long asr s(u) retains the two spatial symmetriesRx
andRy the six fundamental symmetry lines given in Table
are generally applicable. From these symmetry lines and
application of the map the infinite hierarchy of symme
lines can, in principle, be found. The intersections of the
lines provide the location in phase space of the perio
points of all the symmetric periodic orbits. The symme
line methodology is extremely powerful and can be au
mated to make the determination of periodic orbits parti
larly easy. This becomes an important consideration w
semiclassical methods such as trace formulas are being
plied. This is an important direction of future research sin
many of the interesting physical systems that can be mod
ev
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by billiards are mesoscopic systems lying on the border
tween the quantum and classical worlds.
There are other interesting situations that we have left un
dressed. If the particle energy is lowered significantly t
corresponding asymptotic region shrinks and eventually
upper~lower! lobes of Fig. 12 will overlap the lower~upper!
interaction region. This should represent a significant cha
in the scattering dynamics in the sense that some trajecto
escaping the upper~lower! interaction region will be rein-
jected into the lower~upper!. The effect will be to increase
the lifetime of some trajectories without introducing an in
nitely self-similar structure since they will still be primaril
near the P2 manifold and therefore attracted to th
asymptotic region. To put this another way, the signal will
a lot noisier. However, the directionality of the scatteri
will be just as pronounced since the KAM islands of theP2
will still be in effect and the escape angle will necessarily
close top/2.
Finally, changing the deformation parameter, particula
making it smaller, will substantially change the bound pha
space and therefore the scattering. If there are irrational
remaining they will impose natural boundaries to the m
mentum diffusion of trajectories. This should generally pr
duce a simplification in the self-similar patterns of the sc
tering functions since there will be an absolute windi
number barrier beyond which the asymptotic region is in
cessible.
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